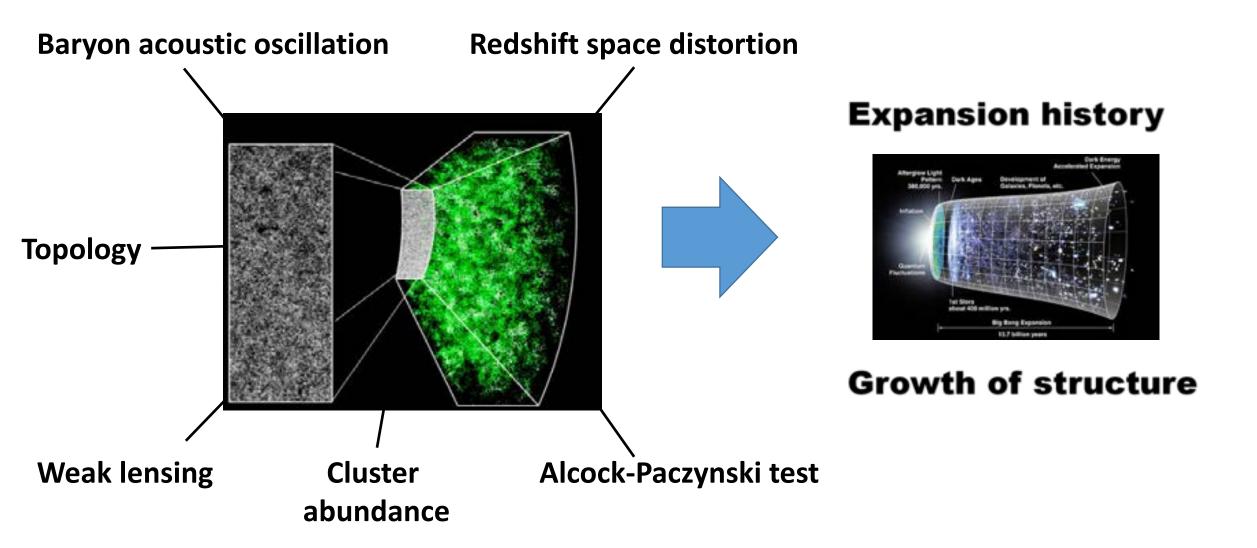
LSS Survey Cosmology

Xiao-Dong Li (SYSU,中山大学)

WITH Changbom Park, Juhan Kim (KIAS), Feng Fang, Haitao Miao, Xiaolin Luo (SYSU), Cristiano G. Sabiu, Hyunbae Park, Arman Shafieloo, Sungwook Hong (KASI), J. E. Forero-Romero (Univ. de los Andes), David H. Weinberg (OSU), Donald P. Schneider (Penn State), Yuting Wang, Gong-bo Zhao (NAOC), ...

April 28, 2019 @ CCNU, WuHan

Large-scale Structure (LSS)



Why new methods?

80% LSS people mainly working on BAO

80% cosmology people ONLY use BAO

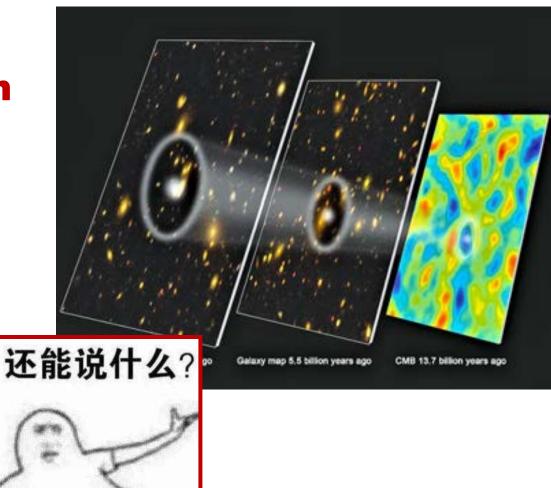
Far from exploring everything!

My work: designing new methods

BAO only probes ~100Mpc/h

A lot of information on nonlinear scales

But still 80% people only using BAO.... 我 Far from exploring everything!



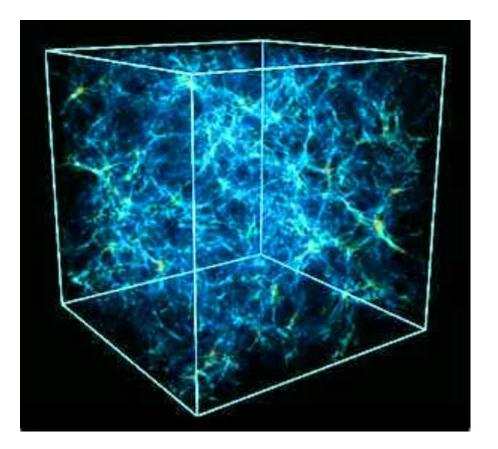
Outline

AP Test

Volume Effect

β-skeleton

Machine learning

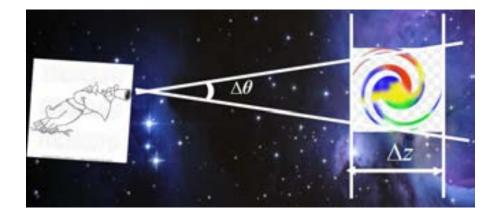


I. Tomographic AP Test

The Alcock-Paczynski test

Alcock & Paczynski, Nature, 1979

We need cosmology to calculate 3d shape



$$\Delta r_{\parallel} = \frac{c}{H(z)} \Delta z$$

$$\Delta r_{\perp} = (1+z) D_A(z) \Delta \theta$$

$$H(z) = H_0 \sqrt{\Omega_m a^{-3} + (1-\Omega_m) a^{-3(1+w)}}$$

$$D_A(z) = \frac{c}{1+z} r(z) = \frac{c}{1+z} \int_0^z \frac{dz'}{H(z')}$$

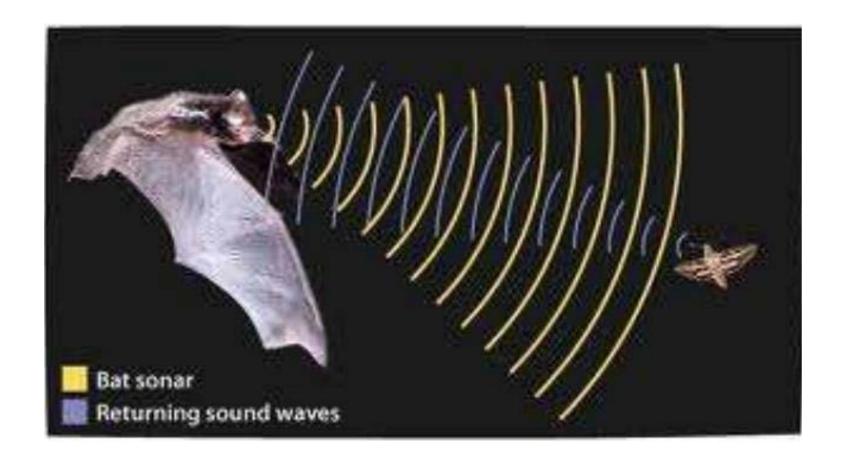
In case of using wrong cosmology....

Shape distortion from the wrong H, D_A:

Q: How can we find isotropic objects in the Universe?

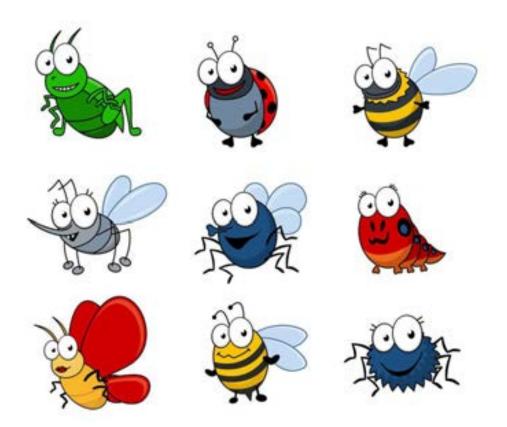
A: Galaxy distribution statistics!

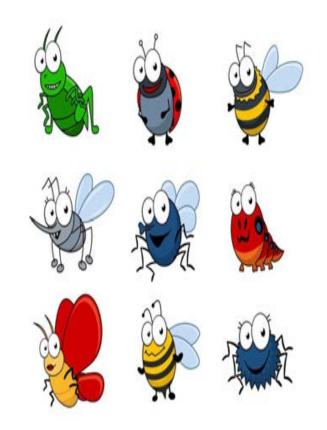
Credit: Sloan Digital Sky Surve



The bat can identify an object by the sound of the echo.

The bat receives the sound, and its brain convert it into 3d positions.





What if something wrong in brain? A: Wrong distribution of bugs!There is no problem with observables. The interpretation is wrong.Through statistics we can find our interpretation is wrong.

Difficulty: Contamination from RSD

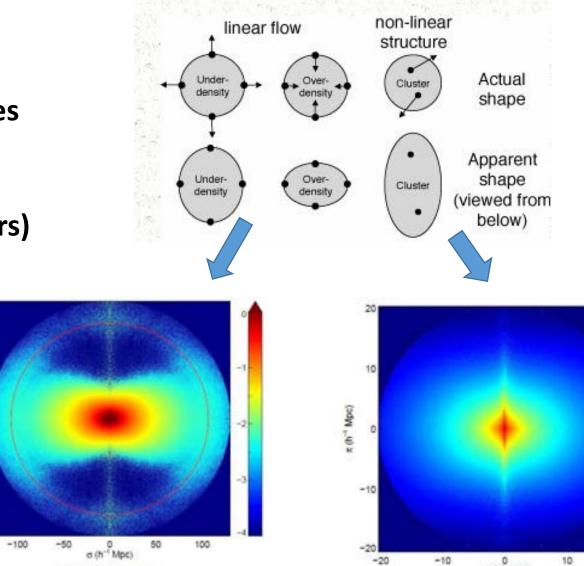
100

-100

(b) redshift space

Galaxy peculiar motion produces strong anisotropy

(no good solution for many years)



20

Redshift space distortion (RSD)

RSD produces very strong anisotropy.

RSD is usually 5-10 times larger than AP distortion.

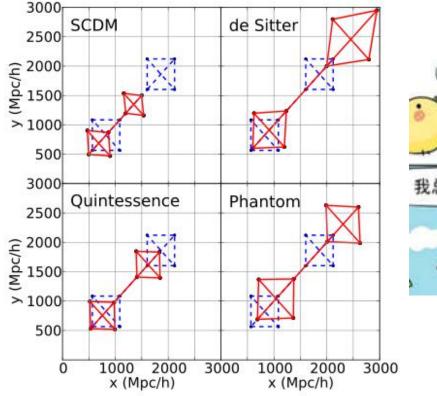
RSD is non-linear, very difficult to be modelled.

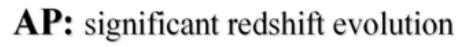
To constrain cosmology, we need to overcome the RSDs.

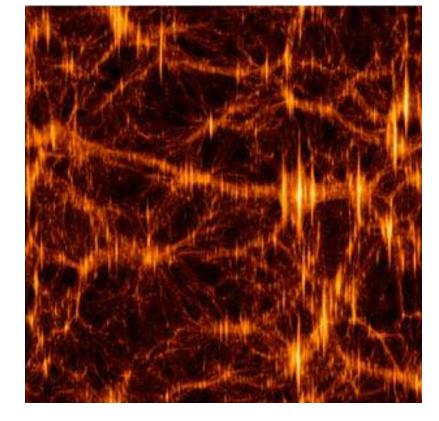
How to distinguish AP from RSD?

Li et al, 2014, ApJ, work with Prof. Changbom Park @ KIAS

AP observed in Ω_m =0.26 ACDM Observer located at (0,0)



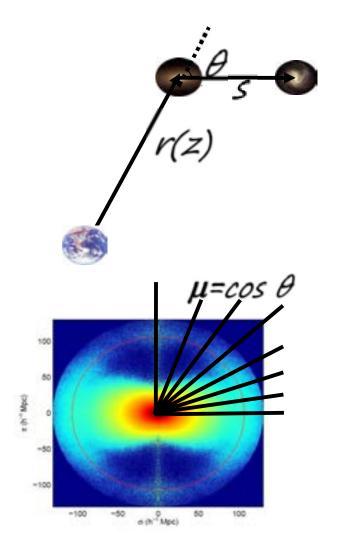




RSD: pattern ~ independent of redshift

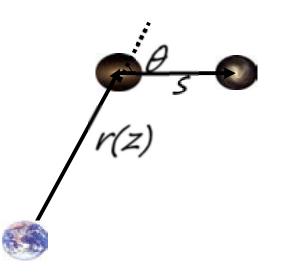
Distinguishing AP & RSD in 2pCF statistics

Li, Park, Sabiu, et al. 2015, MNRAS



Statistical Quantification via 2PCF

Li, Park, Sabiu, et al. 2015, MNRAS

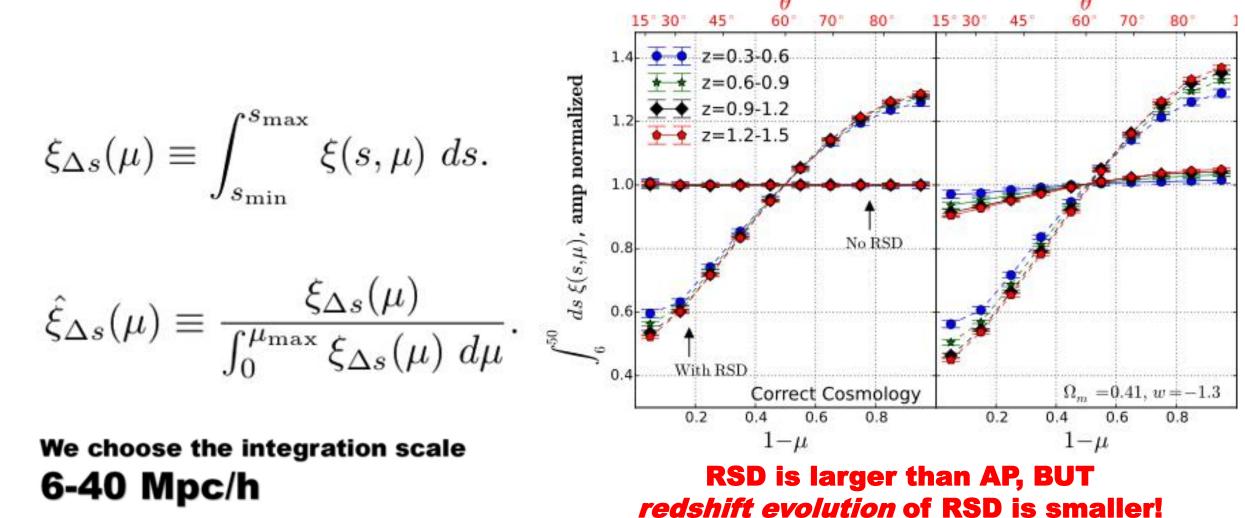


 $\mu = \cos \theta$, describing the anisotropy

Statistical Quantification via 2PCF

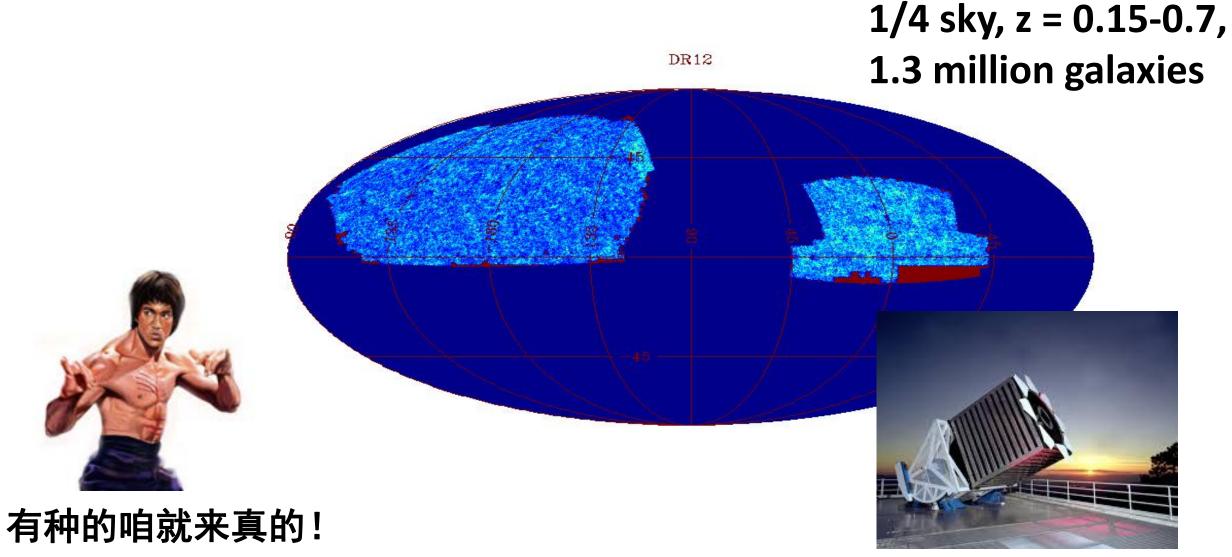
Li, Park, Sabiu, et al. 2015, MNRAS

Test on N-body



Application to SDSS DR12

Li, Park, Sabiu, et al. 2016, ApJ



Systematics

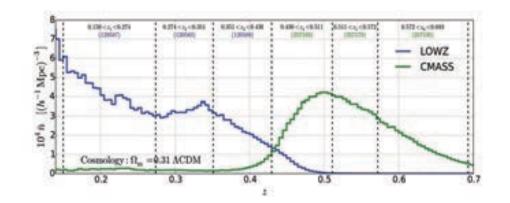
1. RSD

2. Galaxy bias (affect clustering)

3. Angular variation

4. Radial variation (incomplete LF coverage)

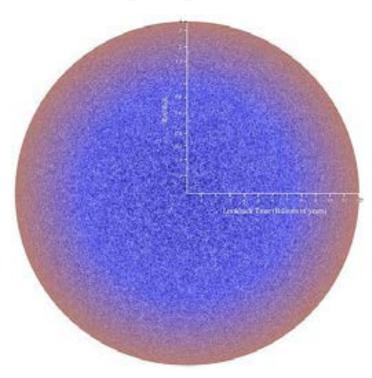
5. Fiber collision (high-density regions under-sampled)



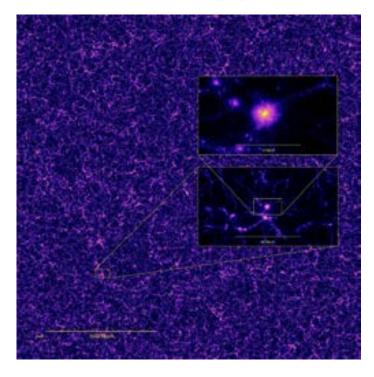
But, we solved them, easily: Just create mocks to simulate everything.

同志,麻烦你共产主义一点

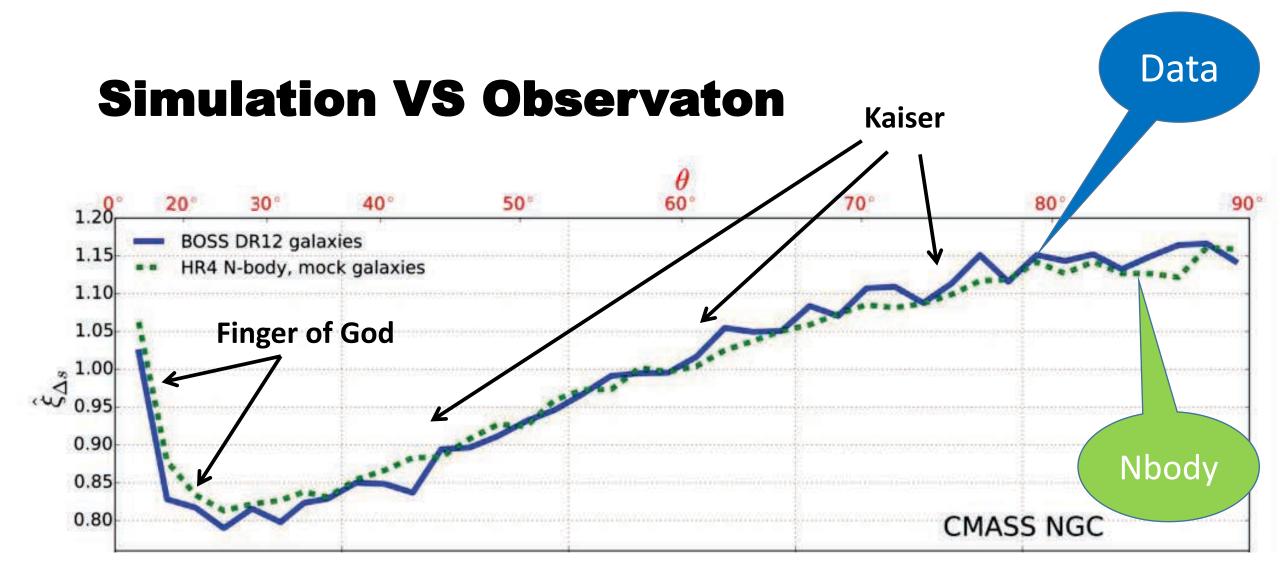
Correcting systematics (Horizon run N-body)

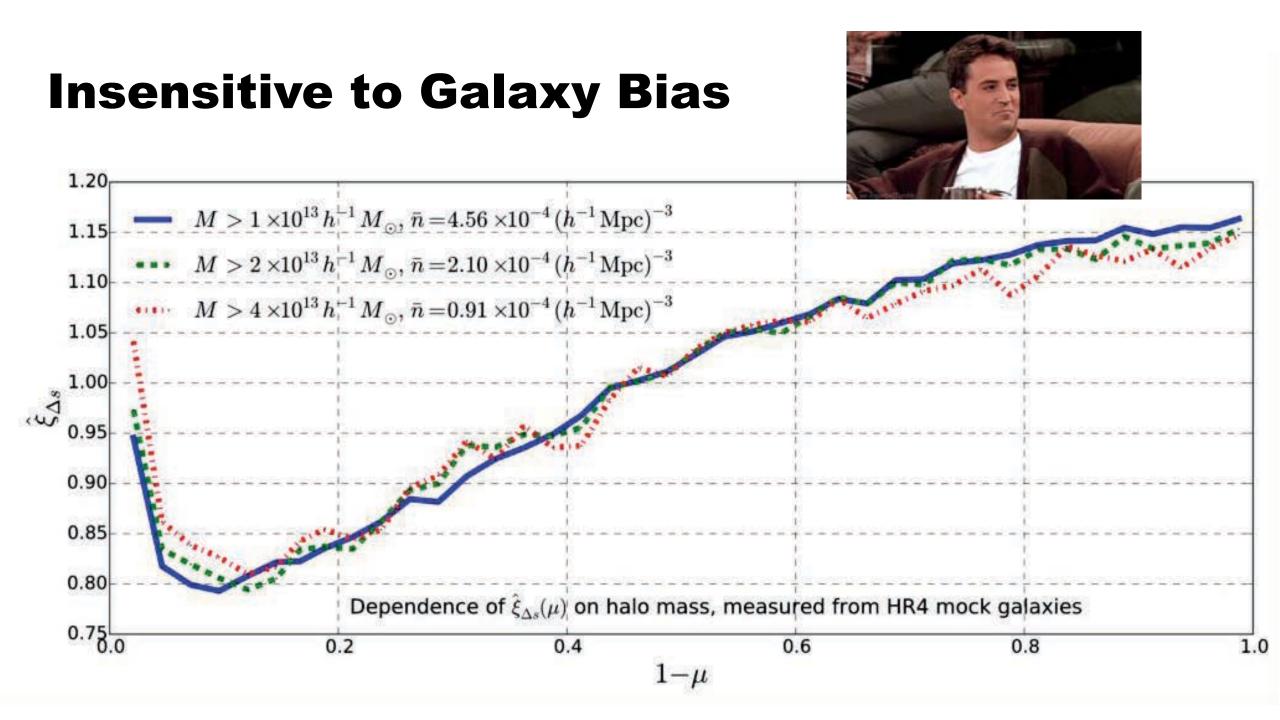


HR3 (Kim et al. 2012) (10.815 *h*⁻¹ Gpc)³ 7120³ particles

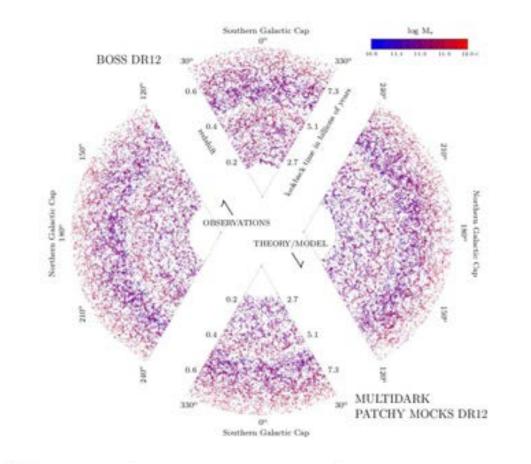


HR4 (Kim et al. 2015) (3.15*h*⁻¹ Gpc)³ 6300³ particles





Covariance: MultiDark-PATCHY Mocks



Not real N-body.

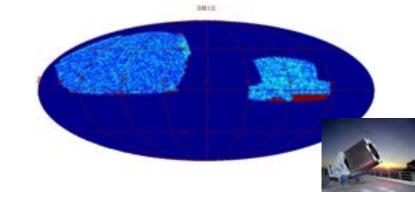
Cheap, fast.

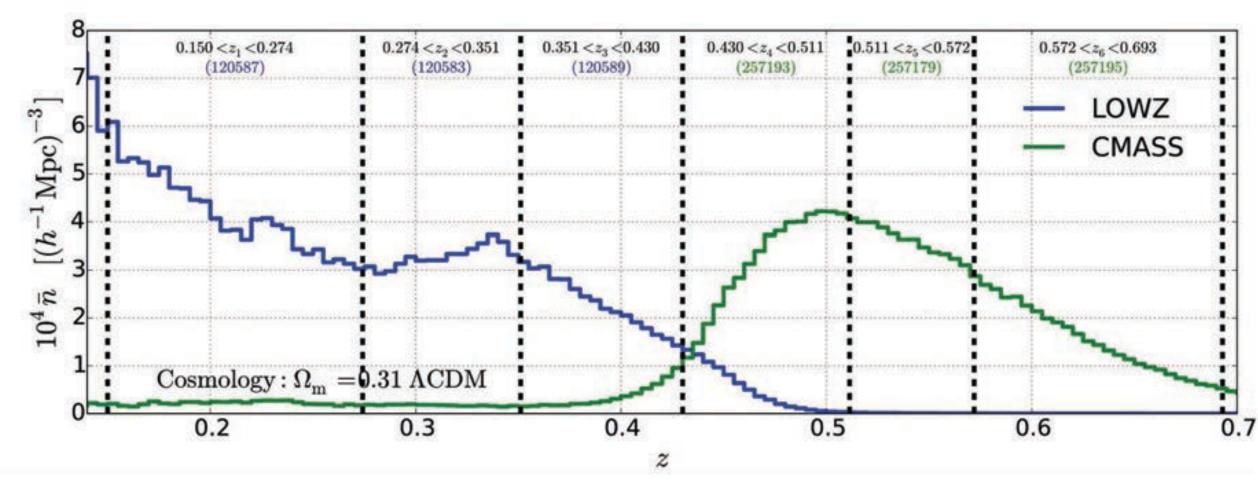


2048 mocks \rightarrow covariance matrix

Methodology: 6-bin evolution

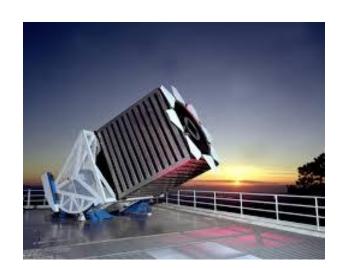
Li, Park, Sabiu, et al. 2016, ApJ

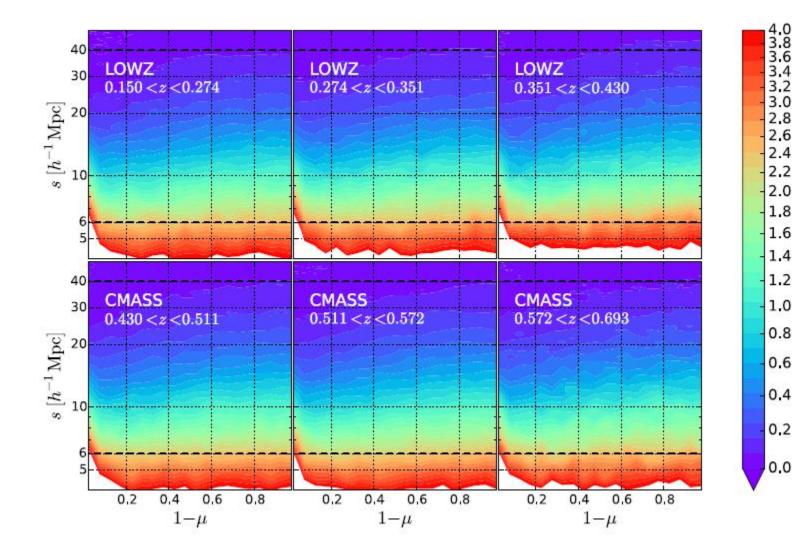


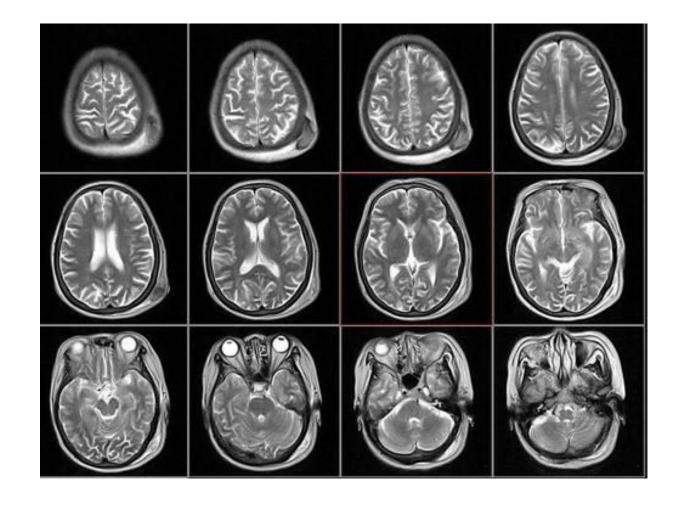


True cosmology: the one has minimal redshift evolution after systematics correction

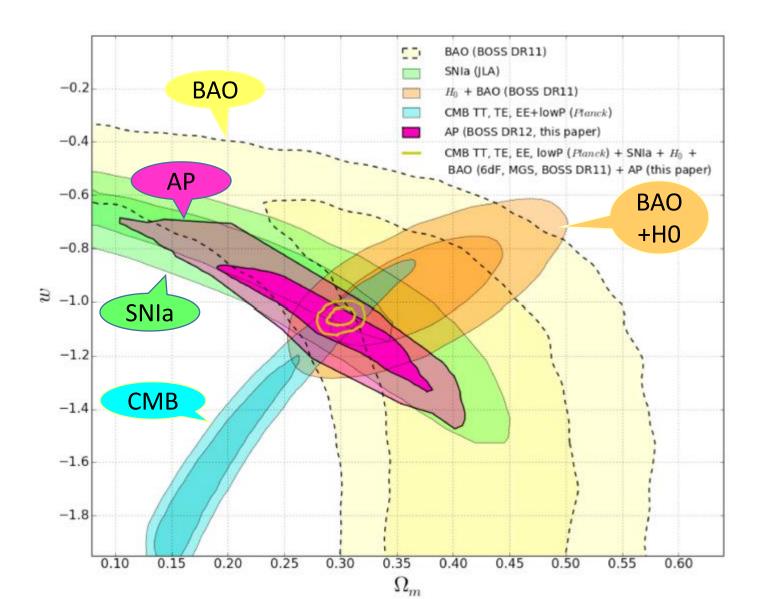
Tomographic Analysis







Cosmological constraints from SDSS DR12



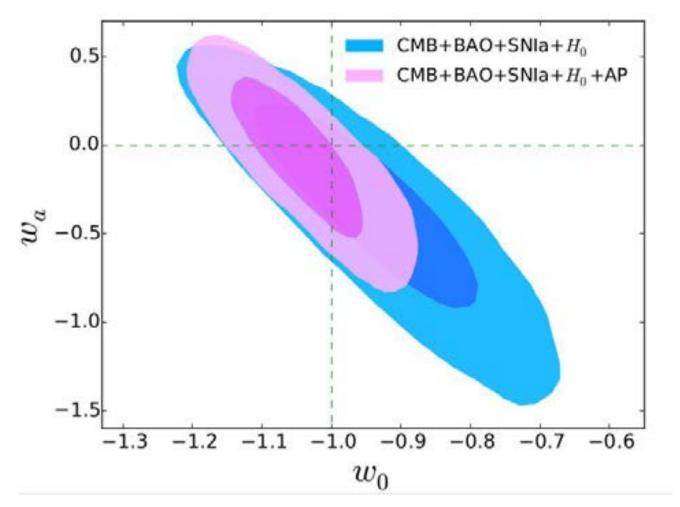
Tighter than SNIa Consistent with everything. Combining all:

> $\Omega_{\rm m} = 0.301 \pm 0.006$ w = -1.054 ± 0.025

AP reduces the error by **30-40%**!

Dynamical dark energy

Li, Sabiu, Park, et al. 2018, ApJ



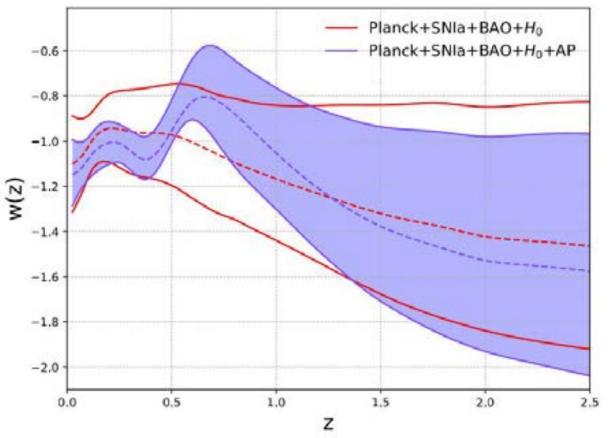
$$w = w_0 + w_a z / (1+z)$$

Result consistent with cc

AP reduces the contour area by **100%!**

Nonparametric dark energy reconstruction

Zhang, Gu, Wang, et al. 2019, ApJ submitted



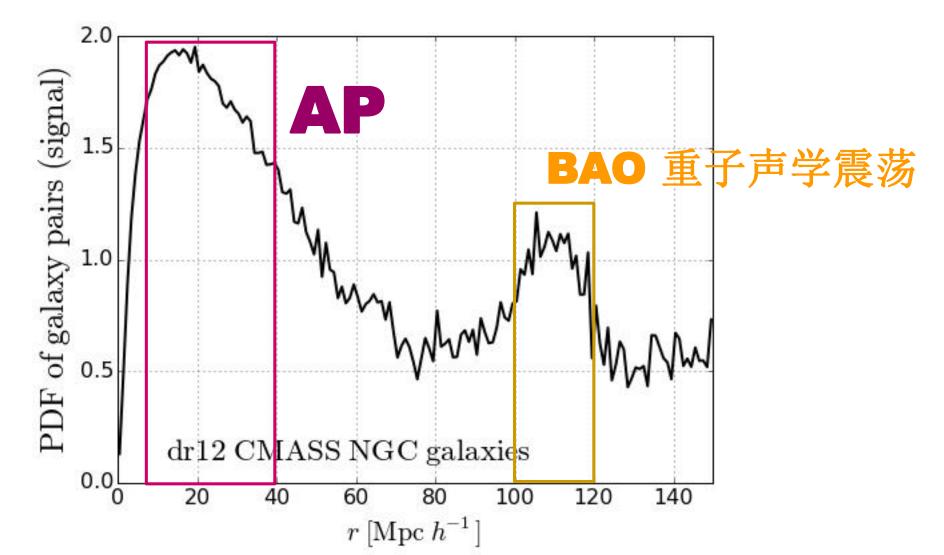
At z<0.8, AP reduces the error by ~

100%

Low redshift result as tight as with Zhao et al. 2017, Nat. Astron., 1, 627 (they combine 16 datasets)

Q1: Why so powerful !?

A: Information from small-scale clustering.



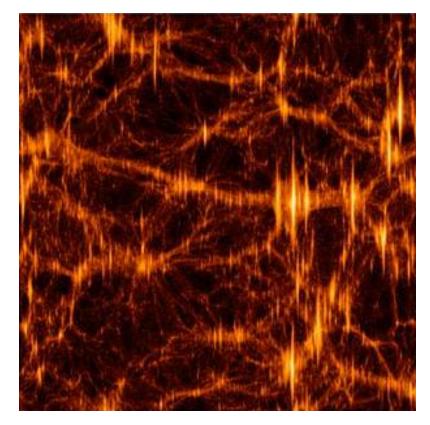
Q2: Why you are able to use 6-40 Mpc/h?

A1:

We avoid modelling RSD in

a smart way.

A2 (guess, in study): We are <u>making use of the</u> FOG



Check systematics

We have to test the following options

- Six redshift bins from 0.15 < z < 0.7 Fiducial: Omegam=0.26 LCDM
- 20-25 bins @ mu
- s = 6 40 Mpc/h
- mu = 0 0.97 (drop FOG & Fiber Collision)
- 2,000 PATCHY mocks for covariance matrix
- Systematic correction from HR4 J08 galaxies

The systematics test

took me half a year.



Number of mocks for covariance

Numerous merits

- * Breakthrough (Overcoming RSD!)
- * Powerful
- * Robust (no serious systematics)
- * Simple (no complicated modelling)
- * Unique (using 6-40 Mpc/h)
- * Extra (independent from BAO, RSD, SNIa)
- * **Promising** (applicable to future surveys)

Commetns from Prof. Donald Schneider :

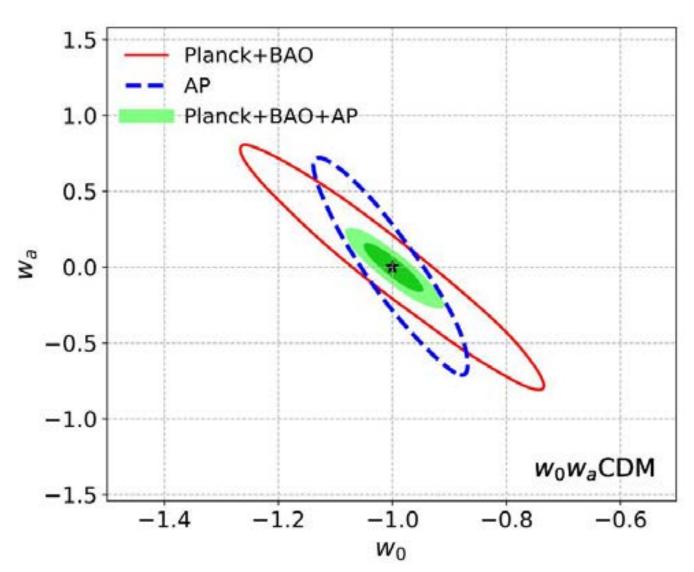
"a major advance"

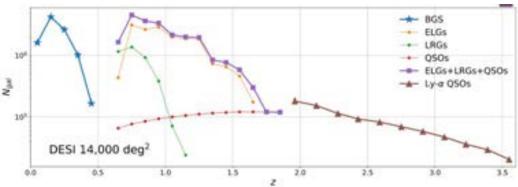
"extremely promising"

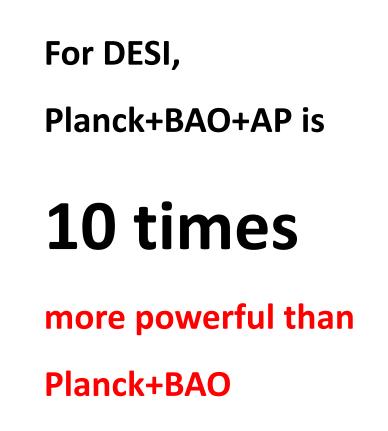
"I believe it will indeed be used in the future"

DESI Forecast

Li et al. 2019, ApJ



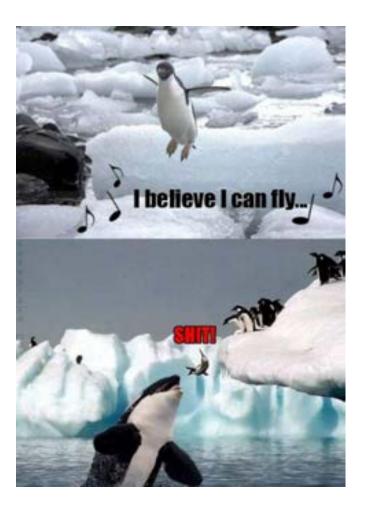




More stories

* Volume effect

- * β-skeleton
- * Machine learning



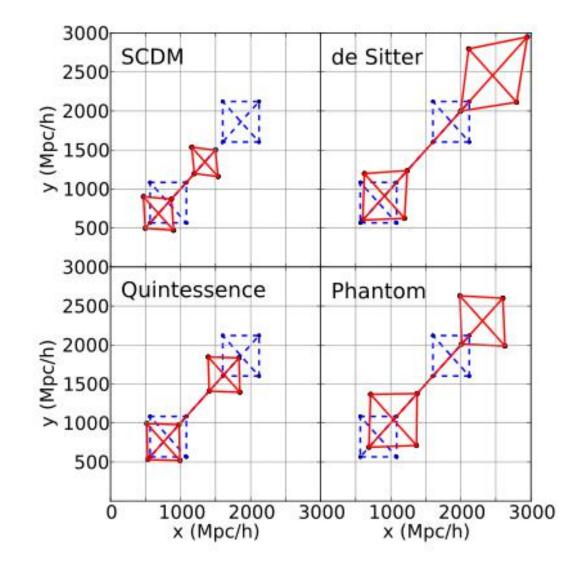
Volume effect

Li, Park, Sabiu, et al. 2017, ApJ

Another consequence of wrongly cosmology:

Volume _{wrong}	$[D_{\rm A}(z)^2/H(z)]_{\rm wrong}$
Volume _{true}	$[D_{\rm A}(z)^2/H(z)]_{\rm true}$

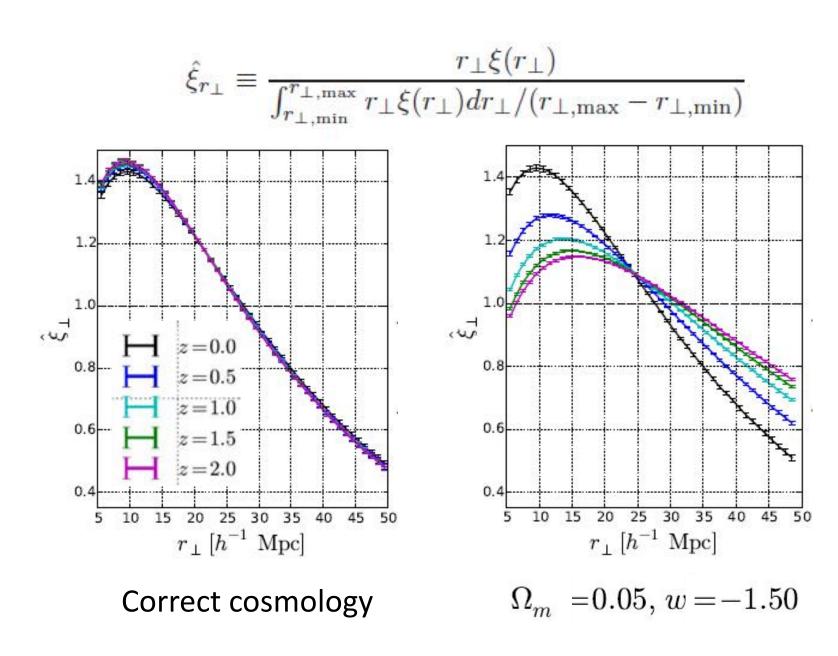
Volume change depends on redshift!



Volume effect

Li, Park, Sabiu, et al. 2017, ApJ

Volime effect creates <u>redshift evolution</u> of 2PCF shape!



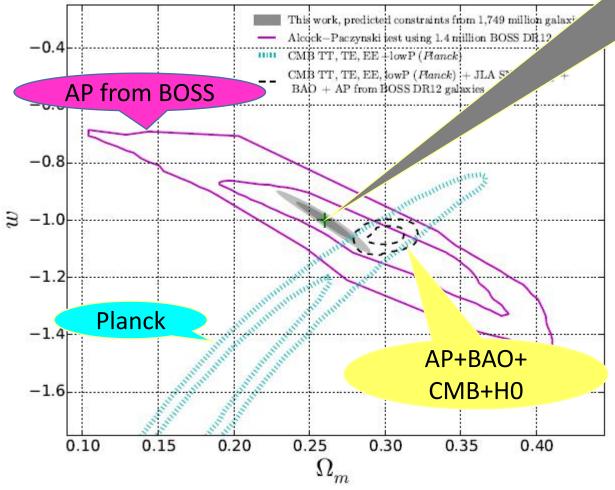
Volume effect

Li, Park, Sabiu, et al. 2017, ApJ

Volume Effect from 10% LSST

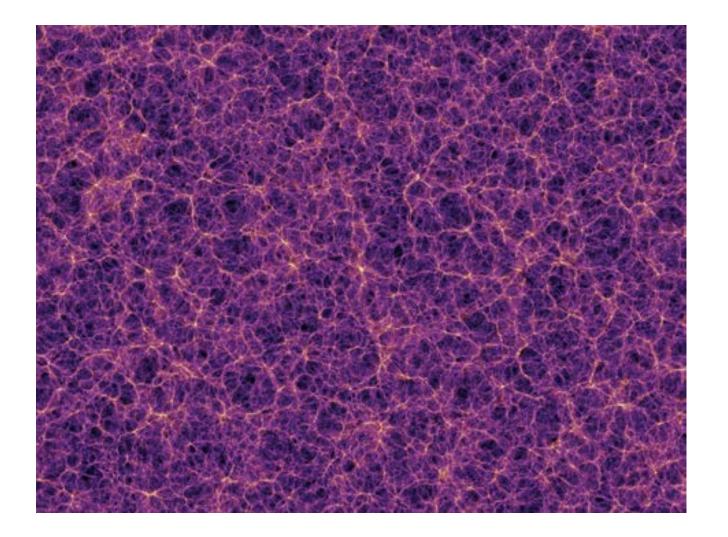
Amazing constraints

expected from LSST!



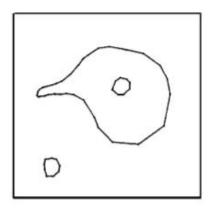
β-skeleton

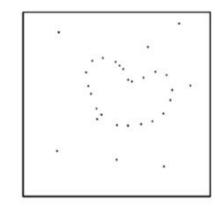
Feng et al., MNRAS, 2018

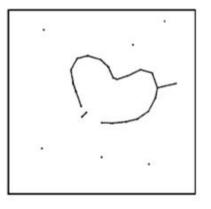


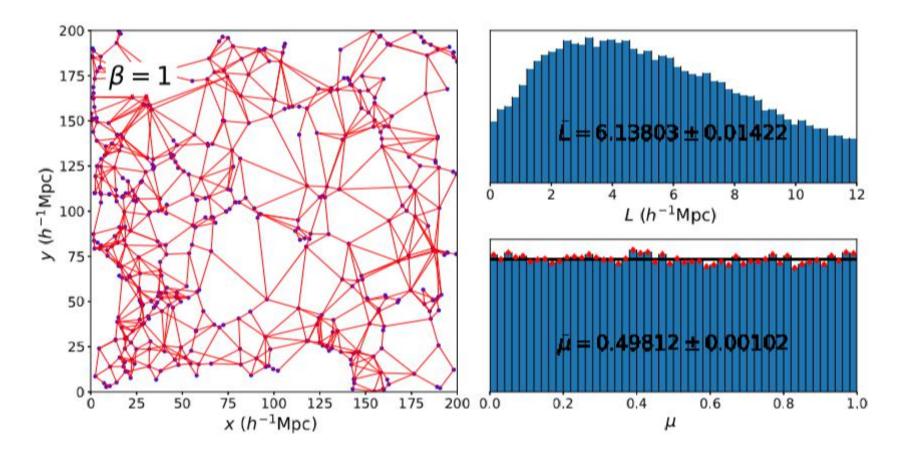
Cosmic Web is far more than a simple Gaussian field. Have to find some methods beyond 2point.

٤.... β-SKELETON

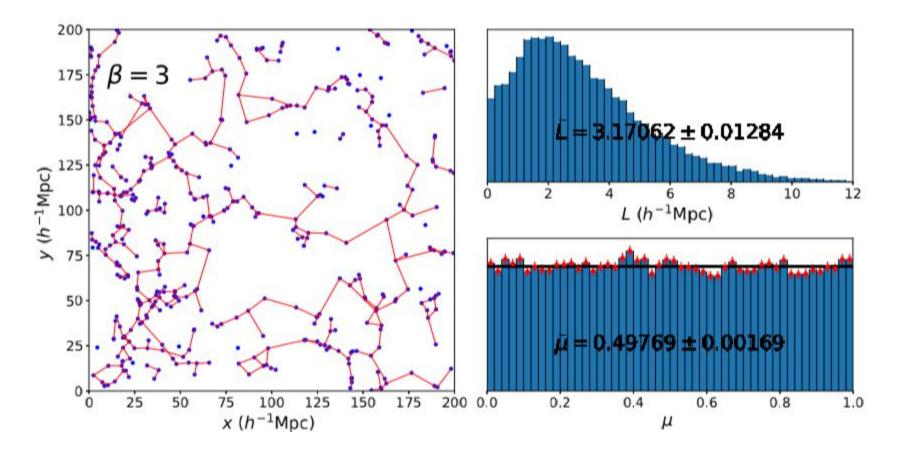








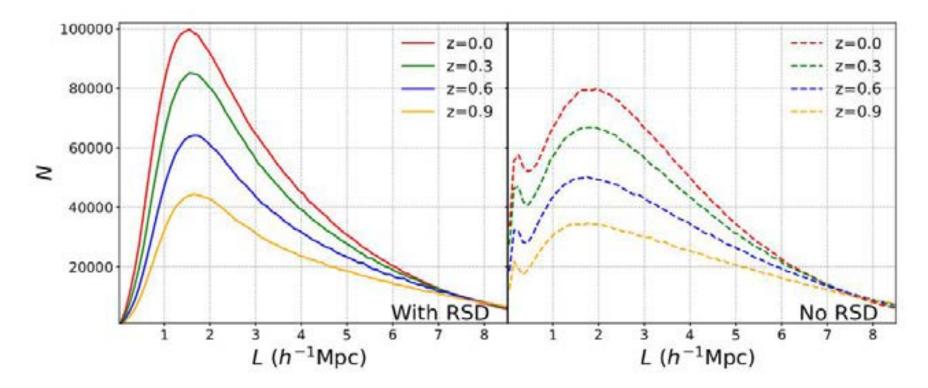
- Sample: z=0 halo catalog of the BigMDPL simulation
 - L : length of the connections
 - μ ≡ |cos θ|



- Sample: z=0 halo catalog of the BigMDPL simulation
 - L : length of the connections
 - μ ≡ |cos θ|

β-skeleton

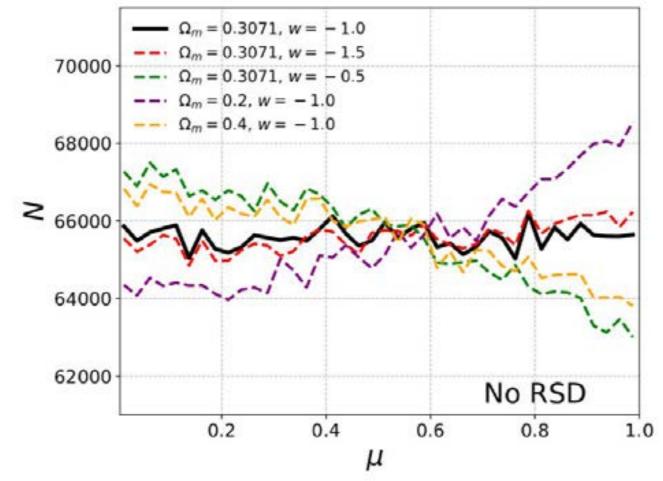
Feng et al., MNRAS, 2018



- 4 BigMDPL snapshots at redshifts 0, 0.3, 0.6, and 0.9
- FOG peak location invariant with redshift
 - can be used to probe volume effect

β-skeleton

Feng et al., MNRAS, 2018



• **Distribution of µ in different wrong cosmological models** *can be used to constrain cosmology!*

Machine learning cosmology

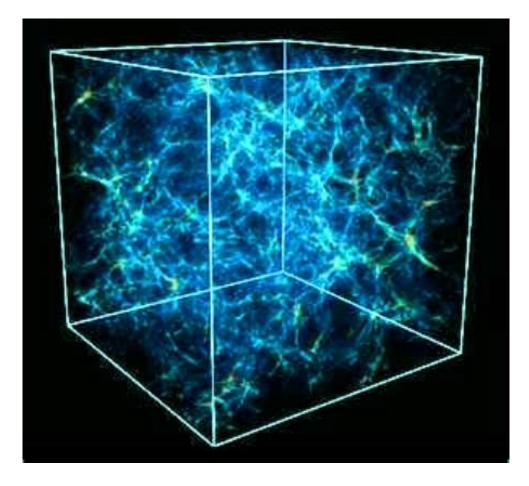
In progress ...

LSS is a very very complicated system

No man-designed statistics can capture everything

MACHINES should be better than

human



Machine learning cosmology

In progress ...

1. Learn to estimate the cosmological

parameters (led by Xiao-Dong)

Learn to fast simulation: 600 hrs -> 1s
 (Kwan Chuen Chan)

Deep Learning = Learning Hierarchical Representations Marazato This deep if it has more than one stage of non-linear feature Low-Level + Mid-Level + High-Level + Trainable Feature + Feature + Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

3. Learn to reconstruct BAO (Xin Wang)

Conclusion

The end... is just

the beginning

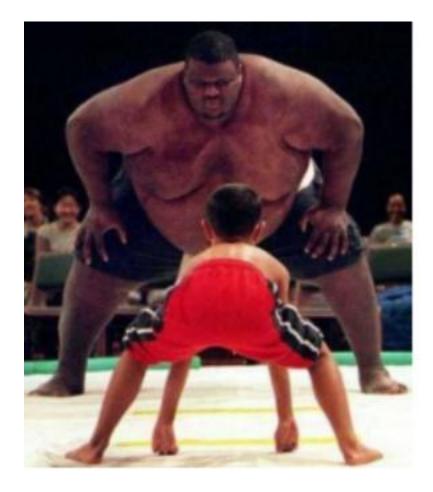
Bethany Hamilton

PICTURE QUOTES . com

Of course, it is important to construct powerful experiments...

People get very excited when they launched some big guy.

At the same time, having a good analysis method is EQUALLY IMPORTANT!



It is not easy to tackle

the DARK ENERGY

报名:

5月5日前,关注"中山大学 人才发展办公室"微信公众 号,菜单栏点击"招贤纳士"

、"<u>我要应聘</u>"

Unveiling the Universe...

Thank you!